

Sample Report

Security Assessment Report

November 1, 2017

Report Prepared by:

InstaSafe Technologies

The information contained within this report is considered proprietary and confidential to the Demo

Limited. Inappropriate and unauthorized disclosure of this report or portions of it could result in significant

damage or loss to the Demo ltd or Clients of Demo ltd.. This report should be distributed to individuals on a

Need-to-Know basis only. Paper copies should be locked up when not in use. Electronic copies should be

stored offline and protected appropriately.

1.EXECUTIVE SUMMARY 3

1. Background 3
2. Application health 3
3. Notes 3

2.INTRODUCTION 4

Scope 4

Scan Detail 4
Methodology 4

3.THREAT ANALYSIS 5

3.1 Summary of Vulnerablities Found 6

3.2 Vulnerability Details 7

Executive Summary

INSTASAFE was contracted by Demo Limited to conduct a penetration test
in order to determine its exposure to a targeted attack. All activities were
conducted in a manner that simulated a malicious actor engaged in a
targeted attack against demobile app with the goals of discovering
application vulnerabilities

APPLICATION HEALTH

HIGH MEDIUM LOW

 1 6 2

Introduction

Demo LTD engaged INSTASAFE to perform android app testing on Demobile
beginning on 20th MAR 2017 and ending on 21st MAR 2017.

Objective

The objective of this assessment was to assess the overall security posture
of the application from grey box & black box perspective. This includes
determining the application’s ability to resist common attack patterns and
identifying vulnerable areas in the internal or external interfaces that may
be exploited by a malicious user.

Scope

The scope of this engagement was limited to components and interfaces
specific to Demobile android application.

Methodology

Assessment Type

Automated testing checked for false positive, than intensive manual testing
using owasp top10 mobile app testing methodology.

wƛǎƪ !ǎǎŜǎǎƳŜƴǘ aŜǘƘƻŘƻƭƻƎȅ

The severity assigned to each vulnerability was calculated using the NIST
800-163 standard. The vulnerabilities in this appendix are broken into three
hierarchical levels, A, B, and C. The A level is referred to as the vulnerability
class and is the broadest description for the vulnerabilities specified under
that level. The B level is referred to as the sub-class and attempts to narrow
down the scope of the vulnerability class into a smaller, common group of
vulnerabilities. The C level specifies the individual vulnerabilities that have
been identified. The purpose of this hierarchy is to guide the reader to
finding the type of vulnerability they are looking for as quickly as possible.

Table 1. Android Vulnerabilities, A Level

 Type Description Negative Consequence

Incorrect Permissions Permissions allow accessing
controlled functionality such as the
camera or GPS and are requested
in the program. Permissions can be
implicitly granted to an app without
the userôs consent.

An app with too many permissions
may perform unintended functions
outside the scope of the appôs
intended functionality. Additionally,
the permissions are vulnerable to
hijacking by another app. If too few
permissions are granted, the app
will not be able to perform the
functions required.

Exposed Communications Internal communications protocols
are the means by which an app
passes messages internally within
the device, either to itself or to other
apps. External communications
allow information to leave the
device.

Exposed internal communications
allow apps to gather unintended
information and inject new
information. Exposed external
communication (data network, Wi-
Fi, Bluetooth, NFC, etc.) leave
information open to disclosure or
man-in-the-middle attacks.

Potentially Dangerous Functionality Controlled functionality that
accesses system-critical resources
or the userôs personal information.
This functionality can be invoked
through API calls or hard coded into
an app.

Unintended functions could be
performed outside the scope of the
appôs functionality.

App Collusion Two or more apps passing
information to each other in order to
increase the capabilities of one or
both apps beyond their declared
scope.

Collusion can allow apps to obtain
data that was unintended such as a
gaming app obtaining access to the
userôs contact list.

Obfuscation Functionality or control flows that
are hidden or obscured from the
user. For the purposes of this
appendix, obfuscation was defined
as three criteria: external library
calls, reflection, and native code
usage.

1. External libraries can contain
unexpected and/or malicious
functionality.
2. Reflective calls can obscure the
control flow of an app and/or
subvert permissions within an app.
3. Native code (code written in
languages other than Java in
Android) can perform unexpected
and/or malicious functionality.

Excessive Power Consumption Excessive functions or unintended
apps running on a device which
intentionally or unintentionally drain
the battery.

Shortened battery life could affect
the ability to perform mission-critical
functions.

Traditional Software Vulnerabilities

All vulnerabilities associated with
traditional Java code including:
Authentication and Access Control,
Buffer Handling, Control Flow
Management, Encryption and
Randomness, Error Handling, File
Handling, Information Leaks,
Initialization and Shutdown,
Injection, Malicious Logic, Number
Handling, and Pointer and
Reference Handling.

Common consequences include
unexpected outputs, resource
exhaustion, denial of service, etc.

A B C

A1
Permission of the

Behavior Error

B1 Over Granting

C1 Over Granting in Code

C2 Over Granting in API

B2 Under Granting

C3 Under Granting in Code

C4 Under Granting in API

B3
Developer Created

Permissions

C5 Developer Created in Code

C6 Developer Created in API

B4 Implicit Permission

C7 Granted through API

C8 Granted through Other Permissions

C9 Granted through Grandfathering

A2

Exposed

Communications

B5

External Communications

C10 Bluetooth

C11 GPS

C12 Network/Data Communications

C13 NFC Access

B6

Internal Communications

C14 The purpose of unprotected

C15 Unprotected Activity

C16 Unprotected Services

C17 Unprotected Content Providers

C18 Unprotected Broadcast Receivers

C19 Debug Flag

A3

Potentially Dangerous

Functionality

B7 Direct Addressing

C20 Memory Access

C21 Internet Access

B8 Potentially Dangerous API C22 Cost Sensitive APIs

C23 Personal Information APIs

C24 Device Management APIs

B9 Privilege Escalation

C25 Altering File Privileges

C26 Accessing Super User/Root

A4 Application Collusion

 B10

Content Provider/Intents

 C27 Unprotected Content Providers

 C28
Permission Protected Content

Providers

 C29 Pending Intents

 B11

Broadcast Receiver
 C30

Broadcast Receiver for Critical

Messages

B12
Data

Creation/Changes/Deletion

C31
Creation/Changes/Deletion to File

Resources

C32
Creation/Changes/Deletion to

Database Resources

B13 Number of Services C33 Excessive Checks for Service State

A5 Obfuscation

B14 Library Calls

C34 Use of Potentially Dangerous Libraries

C35
Potentially Malicious Libraries

Packaged but Not Used

B15 Native Code Detection C36

B16 Reflection C37

B17 Packed Code C38

A6
Excessive Power

Consumption

B18 CPU Usage C39

B19 I / O C40

 Summary of Vulnerabilities Found

&ÉÎÄÉÎÇ 3ÅÖÅÒÉÔÙ

Mpin Leakage Via Log A1B4C3

Application is vulnerable to PIN authentication
bypass vulnerability

A1B1C2

Application has set insecure Permissions A1B4C8

Weak Encoding Technique used in the application A5B17C34

Attacker can have full access to the mobile
application source code

A1B1C1

Option method Enabled A4B13C33

Default server page found on server A4B12C31

Sensitive Activity Exported A2B6C16

Application displays web server banner in response A5B16C36

Vulnerability Details

1.Issue ï Mpin Leakage Via Log

RISK –Medium

Description-when developer of the application accidently leaks the data. Well any developer
would never want to leak the data but in some scenarios he assumes that the particular data is
only accessible to the application not to any adversary. Often Developers leave debugging
information publicly. So any application with READ_LOGS permission can access those logs and
can gain sensitive information through that

Proof Of Concept –

Steps to produce –

1. Open app

2. Run this command pidcat com.demobile

3. Enter MPIN and it will be reflected in log

RECOMENDATION - Avoid creating logs when applications crashes and if logs are sent over

the network then ensure that they are sent over an SSL channel. And Use strong encoding.

REFERENCES-

https://www.owasp.org/index.php/Mobile_Top_10_2014-M4

2.Issue ï Application is vulnerable to PIN authentication bypass
 vulnerability

 RISK –High

 Description-An attacker can log in to the application without pin

 Prood Of Concept - 1.when we give an incorrect pin

2.Replace the incorrect pin response with correct pin possible response

{"customerName":"MOBILETEST

A\/C","customerId":"25326315","customerstatus":"A","isSuccessful":true,"status":true,"WL-

Authentication-

Success":{"wl_remoteDisableRealm":{"userId":"null","attributes":{},"isUserAuthenticated":1,"d

isplayName":"null","deviceId":"null"}},"accdetails":["25326315;00352200000037;CA0037;0.00

"],"accountstatus":true,"availableBalance":"NIL","mobileNumber":"919778825634","statusDesc"

:"success"}

3.Now you can see the loggedin screen.

 RECOMENDATION - Properly check authentication request and response at both client and
server side.

References-
https://www.owasp.org/index.php/Testing_for_Bypassing_Authentication_Schema_%28OWAS
P-AT-005%29

3. Issue ï Application has set insecure Permissions

RISK –Medium

Description-Permission mechanism that enforces restrictions on the specific operations that a

particular process can perform, and per-URI permissions for granting ad hoc access to specific
pieces of data. It was observed that application has set insecure permissions, which will create
security threat to an application.

POC -

Steps to produce –

1. Run command : run app.package.info –a com.Demobile (use drozer)

RECOMENDATION –

Implement or set only necessary permissions to your application.

References:

http://developer.android.com/guide/topics/security/permissions.html

4.Issue ï Weak Encoding Technique used in the application.

 RISK –Medium

 Description-In computers, encoding is the process of putting a sequence of characters
(letters, numbers, punctuation, and certain symbols) into a specialized format for efficient
transmission or storage. Decoding is the opposite process -- the conversion of an encoded
format back into the original sequence of characters. Encoding and decoding are used in data
communications, networking, and storage. The term is especially applicable to radio (wireless)
communications systems.

 Proof Of Concept –

Steps to produce –

1. Follow the screenshot

 RECOMENDATION –Use strong encryption techniques or salted hash approach instead of
 encoding.

5.Issue ï Attacker can have full access to the mobile

 application source codeȢ

 RISK – Medium

 Description-It was observed that the application source code can be accessed easily with the
help of several tools. By this an attacker can able to access all packages inside the “.APK” file
which contains resource files, different bundles, package information and preference
information.

POC -

Steps to produce –

1. For source code run command apktool d demobile.apk

2. For java code run command d2j –dex2jar demobile.apk

 RECOMENDATION -

Critical or sensitive information should not be disclosed in application source code rather the code should
be obfuscated properly.

Implement copy protection or activation scheme mechanism. Also implement code obfuscation
techniques.

References-

http://www.techrepublic.com/blog/software-engineer/protect-your-android-apps-with-
obfuscation/

6.Issue ï Option method Enabled

 RISK –Medium

 Description- The OPTIONS method provides a list of the methods that are supported by the
web server, it represents a request for information about the communication options available
on the request/response chain identified by the Request-URI.

 POC –

Steps to produce –

1. Run $nmap --script http--methods smart.demo.co.in

 RECOMENDATION -

Disable OPTION methods from the server.

Reference-http://acunetix.com/vulnerabilities/web/options-method-is-enabled

7.Issue ï Default server page found on server

RISK – Low

Description- Every website is built inside directories on a Web server. And each Web page is a
separate file on that Webserver. But sometimes, when you go to a URL, there is no file listed in
the URL. But there is still a file that the Web server needs to serve in order for that URL to
display anything other than an error page. This file is the default page for that directory.

Proof Of Concept –

 Steps To Produce –

1. Visit https://smart.demo.co.in/

RECOMENDATION –

Remove the default page from server

REFERENCES-

https://tools.cisco.com/security/center/viewAlert.x?alertId=38700

http://www-304.ibm.com/support/docview.wss?uid=swg24039898

http://www.securiteam.com/securitynews/5MP331FHPW.html

8. Issue ï Sensitive Activity Exported

RISK –Medium

Description- If access to an exported Activity is not restricted; any application will be able to
launch the activity. This may allow a malicious application to gain access to sensitive
information, modify the internal state of the application, or trick a user into interacting with the
victim application while believing they are still interacting with the malicious application. Here
the below activity shown in screenshot is not restricted.

Proof Of Concept–

Steps to produce –

1. Cmd: run app.activity.info -a com.Demobile –u (Use Drozer)

RECOMENDATION –

set android:exported="false" for that activity

REFERENCES-

https://cwe.mitre.org/data/definitions/926.html

http://resources.infosecinstitute.com/android-hacking-security-part-1-exploiting-securing-

application-components/

9.Issue ï Application displays web server banner in
response

RISK –Low

Parameter –X-powered by

Description-HTTP responses from the web server reveal information about the type and version
of the web server, which can be used by an attacker. An attacker can exploit the publicly known
vulnerabilities of servlet version.

Proof Of Concept -

 Steps To Produce –

1. Check server header in screenshot

RECOMENDATION -

Remove default banner wherever possible. Also update to current version.

